KLEE Symbolic Execution Tool
Test-Comp 2019 Entry

Cristian Cadar and Martin Nowack
Department of Computing
Imperial College London

SOFTWARE RELIABILITY
GROUP

Imperial College 15t Test-Comp, 6 April 2019
| ondon Prague, Czech Republic

KLEE uses Dynamic Symbolic Execution

Technique for automatically exploring multiple paths, reasoning about
path feasibility using a constraint solver.

Applications in:
* Bug finding
* Test generation

* Vulnerability detection
and exploitation

* Equivalence checking
* Debugging
* Program repair

!

* etc. etc.

A Bit of History: 1975-76

* Symbolic execution developed independently by several researchers

b B Weabrei SELECT-~A FORMAL SYSTEM FOR
rogramming - Wegbreit - ~ESTING AND DEBUGGING PROGRAMS
; *

Languages _ Editor _ A PROGRAM TESTING SYSTEM BY SYMBOLIC EXECUTION*
Symbolic Execution

d P T tn Lori A. Clarke g:bert ds° 1Boyer

. e Elspa
dn Ir Ogr am es 1 g Computer and Information Science Dept. Ka:xlma;. Le‘s,l;ti
James C. King University of Massachusetts Computer Science Group
IBM Thomas J. Watson Research Center Amherst, Massachusetts 01002 Stanford Research Institute
Menlo Park, California 94025
Symbolic execution of PL/I programs Symbolic execution of Fortran programs Symbolic execution of LISP programs

— >

1975-76

A Bit of History — Trecheliense—mndgrestpromise—

of modern symbolic execution techniques,
and the tools to help implement them.

Symbolic
Execution

for Software
Testing: Three
Decades Later

A Bit of History

* Availability of precise runtime information

e Mixed concrete—symbolic execution <—— * Ability to interact with the environment

e Partly deal with limitations of solvers
* Only relevant code executed symbolically

DART: Directed Automated Random Testing

Patrice Godefroid Nils Klarlund Koushik Sen
Bell Laboratories, Lucent Technologies Computer Science Department
{god,klarlund}@bell-labs.com University of Illinois at Urbana-Champaign

ksen@cs.uiuc.edu

DART system for C

Execution Generated Test Cases: How to Make
Systems Code Crash Itself

Cristian Cadar and Dawson Engler*

Computer Systems Laboratory
Stanford University
Stanford, CA 94305, U.S.A.

EGT system for C

— >

2005

Fourteen Years Later
KLOVER Miasm

PyExz3 SymDroild . .iiGrind 5CUTE
ACE Otter

BinSE |GN= SymJs

. .
/7

PathFinder 4

» DART Ki te?
LDSE B

JalangiZ2

angr

Pex

CATG

Outside Academia
FUJITSU @’

=" Microsoft

TRANL
gI'Te Balébﬁr"

HITACHI

<||I

A

* Symbolic execution for LLVM bitcode, primarily targeting C

e Started at Stanford [Cadar, Dunbar, Engler, OSDI 2008], incorporating the lessons from our
prior system EXE

* Evolved to incorporate many of the ideas developed in the last decade

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler * ' A
Stanford University / 4 :
[OSDI 2008] Daniel Dunbar Dawson Engler

principal author of
I I I original codebase

2008 - present

KLEE — Contributions

Complete redesign of EXE, incorporating lessons learnt
e Cadar, Ganesh, Pawlowski, Engler, Dill [CCS 2006 & TISSEC 2008]
* ACM CCS Test of Time Award 2016

Based on state-of-the-art LLVM compiler infrastructure
* Extensible to other languages beside C (has partial support for C++)

Efficient object-level COW scheme: can keep tens of thousands states in memory
Pluggable search heuristics

Extensible chain solver architecture
* Easy to add partial solvers to the chain, as well as new SMT solvers

Models for symbolic files and command-line arguments
* E.g., klee ... —sym-args 4 100 -sym-files 2 10 ...

Many constraint-solving and path-exploration optimizations

Webpage: klee.github.io
I / <: <: Code: https://github.com/klee
Web version: http://klee.doc.ic.ac.uk

KLEE is open source

e Available on GitHub under a liberal license (UIUC)

e Currently maintained in the SRG group at Imperial, particularly by me and Martin Nowack
e Recently released version 2.0 in March 2019 (Test-Comp version similar)

Widely-used in both industry and academia
* 1000+ stars

e 300+ forks

* 50+ contributors

* 350+ subscribers to mailing list

KLEE — Academic Impact

e Over 2,200 citations to [OSDI 2008] (Google Scholar, Apr. 2019)

* From many different fields (in no particular order):
* Testing: ISSTA, ICST, etc.
* Verification: CAV, HVC, etc.
* Systems: OSDI, SOSP, EuroSys, etc.
e Software engineering: ICSE, FSE, ASE, etc.
* Security: CCS, IEEE S&P, USENIX Security, etc.
* etc.

KLEE — Academic Impact

* Several well-known systems use KLEE, e.g.:
* Cloud9 and S2E from EPFL
e KLEE-UC from Stanford
KleeNet from Aachen; etc.
AEG from CMU,
GKLEE from Utah
BugRedux and F3 from GeorgiaTech
e Symbiotic from Masaryk University
* SemFix and Angelix from NUS
e ZESTI and KATCH from Imperial
* etc.

 http://klee.github.io/publications/ lists over 130 publications/systems
that directly extend or use KLEE

http://klee.github.io/publications/

KLEE — Impact Outside Academia

Many known uses or trials:

Q S 0%% Some publications/talks/blog posts:

FUJ ITSU Baich BE « Fujitsu: [PPoPP 2012], [CAV 2013], [ICST 2015],
[IEEE Software 2017], [KLEE Workshop 2018]

Tq Jim » Hitachi: [CPSNA 2014], [ISPA 2015], [EUC 2016]

PSansungg

HITACHI

OIB o Trail of Bits: https://blog.trailofbits.com/
* Intel: [WOOT 2015]

 NASA Ames: [NFM 2014]

e Baidu: [KLEE Workshop 2018]

KLEE WOI'kShOp 2018 Organization Sponsors M

1st International KLEE Workshop on Symbolic Execution Tweets by @keesymex

19-20 April, 2018 * London, United Kingdom 7/ kleesymex @klcesymes

Save the date! 1st International KLEE

15t International KLEE Workshop 2018

* 80+ participants from 12 different countries
(Had to close registration early)
* Representing both academia, industry and government
* Sponsored by EPSRC, Baidu, Bloomberg, Fujitsu, Huawei and Imperial
* Next edition in 2020

KLEE at Test-Comp

* Competitions have an important role to play in advancing research
and adoption

e SAT-COMP and SMT-COMP are great examples of impactful
competitions

 Thanks to Dirk for the initiative

KLEE at Test-Comp

* Most effort went in understanding the infrastructure and tasks
* Thanks to Dirk and his team for answering our many questions

* Configured KLEE to run with:
e LLVM 6.0 (currently supports 3.4 — 8.0)
e STP (currently supports Boolector, CVC4, Yices2, and Z3, some via metaSMT)

* Made several modifications to KLEE for Test-Comp
e Extended it to support the XML-based test cases of Test-Comp
e Configured it differently for the bug finding and coverage categories
* Fixed some bugs revealed by benchmarks

* Main limitation
e Does not support FP (although two FP extensions of KLEE exist)
* Unsurprisingly, it scored poorly on the FP benchmarks

Test-Comp Benchmarks (afternoon session?)

Test-Comp Benchmarks: The Pros

* Cover many different features, discovered a couple of interesting bugs in KLEE

* (Mostly) no undefined behavior
* Benchmarks with UB that we and others discovered have been generally fixed or removed

* Those in the bug category have specs for the bugs that need to be found

* Most are easy to understand
* Although some automatically generated ones (or preprocessed via CIL) are not

Test-Comp Benchmarks: The Cons

Inherited from SV-COMP, so have a verification twist

Quite small overall
* 10to 184,969 ELOC, but with a median of only 1,409 ELOC
* By contrast, benchmarks used to evaluate testing tools are considerably larger

* Many are hand-crafted
* Interesting cases, but not always representative of real code

* Involve very large inputs

* Arrays of 100,000 elements or unrestricted sizes is typical, but this is not
representative of how testing tools are usually used

Test-Comp Benchmarks: Going Forward

* New and larger benchmarks would improve future editions

* Main challenge is to incorporate them in the current infrastructure
* Multi-file benchmarks with complex build systems
* Varied inputs such as command-line arguments and files
* Undefined behavior
* Lack of specifications

* Types of benchmarks
* File processing apps? Command-line apps?
* Coverage-only category?
* Fault injection?

KLEE Symbolic Execution Tool
Test-Comp 2019 Entry

Cristian Cadar and Martin Nowack
Department of Computing
Imperial College London

SOFTWARE RELIABILITY
GROUP

Imperial College 15t Test-Comp, 6 April 2019
| ondon Prague, Czech Republic

