
KLEE Symbolic Execution Tool
Test-Comp 2019 Entry

Cristian Cadar and Martin Nowack
Department of Computing
Imperial College London

1st Test-Comp, 6 April 2019
Prague, Czech Republic

KLEE uses Dynamic Symbolic Execution

• Bug finding
• Test generation
• Vulnerability detection

and exploitation
• Equivalence checking
• Debugging
• Program repair
• etc. etc.

Technique for automatically exploring multiple paths, reasoning about
path feasibility using a constraint solver.
Applications in:

A Bit of History: 1975-76

• Symbolic execution developed independently by several researchers

Symbolic execution of PL/I programs Symbolic execution of Fortran programs Symbolic execution of LISP programs

1975-76

A Bit of History

A Bit of History
• Mixed concrete-symbolic execution

2005

• Availability of precise runtime information
• Ability to interact with the environment
• Partly deal with limitations of solvers
• Only relevant code executed symbolically

DART system for C
EGT system for C

Fourteen Years Later

angr
Symbolic
PathFinder

CUTE

jCUTE

S2E

Otter

Rubyx

Jalangi2

Pex

SAGE

DART

Mayhem

SymDroid PathGrind

Kite

SymJS

CiVL

PyExZ3

JDart

CATG

Miasm

LDSE

BinSE

KLOVER

Outside Academia

• Symbolic execution for LLVM bitcode, primarily targeting C
• Started at Stanford [Cadar, Dunbar, Engler, OSDI 2008], incorporating the lessons from our

prior system EXE
• Evolved to incorporate many of the ideas developed in the last decade

[OSDI 2008] Daniel Dunbar
principal author of
original codebase

Dawson Engler

2008 – present

KLEE – Contributions
• Complete redesign of EXE, incorporating lessons learnt

• Cadar, Ganesh, Pawlowski, Engler, Dill [CCS 2006 & TISSEC 2008]
• ACM CCS Test of Time Award 2016

• Based on state-of-the-art LLVM compiler infrastructure
• Extensible to other languages beside C (has partial support for C++)

• Efficient object-level COW scheme: can keep tens of thousands states in memory
• Pluggable search heuristics
• Extensible chain solver architecture

• Easy to add partial solvers to the chain, as well as new SMT solvers

• Models for symbolic files and command-line arguments
• E.g., klee … –sym-args 4 100 -sym-files 2 10 …

• Many constraint-solving and path-exploration optimizations

KLEE is open source

• Available on GitHub under a liberal license (UIUC)

• Currently maintained in the SRG group at Imperial, particularly by me and Martin Nowack

• Recently released version 2.0 in March 2019 (Test-Comp version similar)

Widely-used in both industry and academia

• 1000+ stars

• 300+ forks

• 50+ contributors

• 350+ subscribers to mailing list

Webpage: klee.github.io
Code: https://github.com/klee

Web version: http://klee.doc.ic.ac.uk

KLEE – Academic Impact

• Over 2,200 citations to [OSDI 2008] (Google Scholar, Apr. 2019)
• From many different fields (in no particular order):
• Testing: ISSTA, ICST, etc.
• Verification: CAV, HVC, etc.
• Systems: OSDI, SOSP, EuroSys, etc.
• Software engineering: ICSE, FSE, ASE, etc.
• Security: CCS, IEEE S&P, USENIX Security, etc.
• etc.

KLEE – Academic Impact
• Several well-known systems use KLEE, e.g.:
• Cloud9 and S2E from EPFL
• KLEE-UC from Stanford
• KleeNet from Aachen; etc.
• AEG from CMU,
• GKLEE from Utah
• BugRedux and F3 from GeorgiaTech
• Symbiotic from Masaryk University
• SemFix and Angelix from NUS
• ZESTI and KATCH from Imperial
• etc.

• http://klee.github.io/publications/ lists over 130 publications/systems
that directly extend or use KLEE

http://klee.github.io/publications/

KLEE – Impact Outside Academia
Many known uses or trials:

Some publications/talks/blog posts:
• Fujitsu: [PPoPP 2012], [CAV 2013], [ICST 2015],

[IEEE Software 2017], [KLEE Workshop 2018]

• Hitachi: [CPSNA 2014], [ISPA 2015], [EUC 2016]
• Trail of Bits: https://blog.trailofbits.com/

• Intel: [WOOT 2015]

• NASA Ames: [NFM 2014]
• Baidu: [KLEE Workshop 2018]

Photo of the City of London by Daniel Chapman (CC BY 2.0)

1st International KLEE Workshop 2018

• 80+ participants from 12 different countries
(Had to close registration early)
• Representing both academia, industry and government
• Sponsored by EPSRC, Baidu, Bloomberg, Fujitsu, Huawei and Imperial
• Next edition in 2020

KLEE at Test-Comp

• Competitions have an important role to play in advancing research
and adoption
• SAT-COMP and SMT-COMP are great examples of impactful

competitions
• Thanks to Dirk for the initiative

KLEE at Test-Comp

• Most effort went in understanding the infrastructure and tasks
• Thanks to Dirk and his team for answering our many questions

• Configured KLEE to run with:
• LLVM 6.0 (currently supports 3.4 – 8.0)
• STP (currently supports Boolector, CVC4, Yices2, and Z3, some via metaSMT)

• Made several modifications to KLEE for Test-Comp
• Extended it to support the XML-based test cases of Test-Comp
• Configured it differently for the bug finding and coverage categories
• Fixed some bugs revealed by benchmarks

• Main limitation
• Does not support FP (although two FP extensions of KLEE exist)
• Unsurprisingly, it scored poorly on the FP benchmarks

Test-Comp Benchmarks (afternoon session?)

Test-Comp Benchmarks: The Pros

• Cover many different features, discovered a couple of interesting bugs in KLEE
• (Mostly) no undefined behavior

• Benchmarks with UB that we and others discovered have been generally fixed or removed

• Those in the bug category have specs for the bugs that need to be found
• Most are easy to understand

• Although some automatically generated ones (or preprocessed via CIL) are not

Test-Comp Benchmarks: The Cons

• Inherited from SV-COMP, so have a verification twist
• Quite small overall

• 10 to 184,969 ELOC, but with a median of only 1,409 ELOC
• By contrast, benchmarks used to evaluate testing tools are considerably larger

• Many are hand-crafted
• Interesting cases, but not always representative of real code

• Involve very large inputs
• Arrays of 100,000 elements or unrestricted sizes is typical, but this is not

representative of how testing tools are usually used

Test-Comp Benchmarks: Going Forward

• New and larger benchmarks would improve future editions
• Main challenge is to incorporate them in the current infrastructure
• Multi-file benchmarks with complex build systems
• Varied inputs such as command-line arguments and files
• Undefined behavior
• Lack of specifications

• Types of benchmarks
• File processing apps? Command-line apps?
• Coverage-only category?
• Fault injection?

KLEE Symbolic Execution Tool
Test-Comp 2019 Entry

Cristian Cadar and Martin Nowack
Department of Computing
Imperial College London

1st Test-Comp, 6 April 2019
Prague, Czech Republic

