w

TATA

Raveendra.kumar@tcs.

| Copyright © 2019 Tata Consultancy Services Limited

mailto:Raveendra.kumar@tcs.com

Grey-box fuzzing

* Observe the behaviors exhibited on a set of test runs using a light weight instrumentation.
* Use this information to discover new test inputs that might exhibit new behaviors.
* Example : AFL is industrial strength grey box fuzz testing tool.

Vulnerability

Crashing
testinput

Evolutionary

algorithm

based fuzz
engine

Fuzz testing tool

2 TATA CONSULTANCY SERVICES

Automated testing powered by Evolutionary algorithms

Initial population ‘ .
o0

Evaluation

Fitness Assignment

Selection

Reproduction

Initial .‘
test inputs ..

Execute P and
measure coverage

New
test inputs

Fit if new coverage
obtained

Select next fit test
input in queue

Crossover and
Mutation

JWegner,A.Barsel et. al.,

Evolutionary test environment,
Information and software technology,
2001.

R.P. Pargs, M.J. Harrold, et. al.,
Test-data generation Using genetic
Algorithms, Journal of software testing
1999.

P. McMinn, Search based software testing,
Software testing, verification, and Reliability,
2004.

TATA CONSULTANCY SERVICES

Grey-box fuzzing — Working example

" Y

i=0
ch =0

v

l read(fd,inp,20)]

[return cb]

em 6 4 TATA CONSULTANCY SERVICES

Grey-box fuzzing — Working example

rm v Initial input @"a"
i=20
ch =0

v

l read(fd,inp,20)]

Evaluation

| id | _mput | AB [Ac | BA | cA | BD | D | DE | DF_ \
1 1 1 1

a

[return cb]

em 6 5 TATA CONSULTANCY SERVICES

1

i=20
ch =0
l read(fd,inp,20)]
) 4
inpli] 1= \0’ f;'se
true
A
y
inp[i] == ‘b’ fagse
true
B
Spch =chb + 1

[return cb]

" T

Grey-box fuzzing — Working example

ab" v c
Fitness
check
ld mewt AB AC BA
1 "a"
2 “t”
3 “ab”
e

TATA CONSULTANCY SERVICES

Grey-box fuzzing — Working example

Tm @ "a”

ch =0 "b" v

v

l read(fd,inp,20)]

4w AB AC BA CA BD CD DE DF
1 "a" 1 1

2 “b” 1 1

1
3 “ab” 1 1 1
IICII

[return cb]

em 6 7 TATA CONSULTANCY SERVICES

Grey-box fuzzing — Working example

Tm @ "a”

ch = 0 "b" \/

v
l read(fd, inp, 20)] & ®/R

||C|l>< llbbll/" .""x "aba"\/ "abb"

4w AB AC BA CA BD CD DE DF
1 1 1

"a" 1

2 “b” 1 1 1
3 “ab” 1 1 1 1
4 “bb” 2 @ 1 1
5 “aba” 1 1 1 1 1
“abb” 2 1 1 1 1 1

[return cb]

em 6 8 TATA CONSULTANCY SERVICES

Grey-box fuzzing — Working example

" Y

i=0
ch =0

v

l read(fd,inp,20)]

[return cb]

" T

ANV

"Cllx llbbll/" "x "aba"\/ "abb"x n nx

4w AB AC BA CA BD CD DE DF
1 1 1 1

a
2 “b” 1 1 1
3 “ab” 1 1 1 1
4 “bb” 1 1
5 “aba” @ @ 1 @
“abb”
9 TATA CONSULTANCY SERVICES

AFL — Gray Box fuzzer

/' Simple to install and use.

* Several in-built heuristics.

* Found security vulnerabilities in
several software libraries and critical
applications.

* No dependency on program structure

\ and structure of input.

Initial inputs

Initialization

Fit inputs

Prioritize
of test inputs for
fuzzing

Select next test input t Evaluate fitness and add to
for fuzzing a Queue if t’is fit

Evaluate t’ by gathering
Determine the fuzzing coverage info due to run
score N of t ont’

Execute Program on each
generated test input t’

Fuzz t N times

10 TATA CONSULTANCY SERVICES

AFL - Issues

= |nsensitive to Program structure. [Vuzzer]
— The metric used for evaluation is the branch pair visit counts.
= |nsensitive to input structure.[SGF]
= Sensitive to input seeds. [skyfire]
= Sensitive to amount instrumentation. [instrim]
= Not directed towards error. [AFLGO]
= |nability to explore deeper paths. [AFL-fast][Fairfuzz][Driller][safl]

= Fuzzing is random and not adoptive. [Learn & Fuzz]

[AFLGo,AFL-Fast,SGF] : Marcel Bohme, Van-Thuan, et. al., CC17,CC16,arxiv 2019,
[Driller]N.Stephens et.al. Driller: Augmenting fuzzing with Symbolic execution. NDSS 2016.
[Fairfuzz] : C.Lemiux, K.Sen, FairFuzz: Targetting rare braches, ASE 2018.

[instrim]: Chin-Chia Hsu et.al., Instrim: Light weight instrumentation for CGF, BAR 2018.
[Learn&Fuzz]: P. Godefroid, R.Singh Learn & Fuzz, Machine Learning for Input fuzzing, ASE 2017
[Skyfire]: J.Wang. et.al., Data driven seed generation for fuzzing, S&P, 2017

[Vuzzer]: Sanjay Rawat et. Al., Application aware evolutionary fuzzing, NDSS 2017

11

TATA CONSULTANCY SERVICES

....and we encountered few more issues

Unbounded programs :

Programs terminates only when the execution reaches the error location.

Reads input continuously as a stream.

Restrictive range of inputs

Programs input is drawn from a small bounded range.

Programs that process event chains (aka ECA).

Competition specific issues :

Limited time budget : Fuzzing approach is requires a longer exploration time for deeper
bugs; often days and weeks. Budgeted time for each tasks in the competition is 900s.

Benchmark diversity : Large diversity in program’s structure their constraints on input
space, and input size.

Creating binaries : Benchmarks are targeted towards the static verification. Not for
runtime verification. There are benchmarks with missing function definitions.

Execution issues : Large size memory allocations, kernel mode execution etc.

12 TATA CONSULTANCY SERVICES

VeriFuzz - approach

= VeriFuzz is designed to address few of these issues.

= Emphasis is on speed.

= Proposed approaches in literature are either heavy or require large changes to AFL.
= Focus is on light weight instrumentation, analysis and transformation.

= Addressed the following issues.

Reduced instrumentation overhead.
Novel seed generation for programs with complex input validations.

Bounding the unbounded programs.

W N

Restricted range of inputs.

Algorithmic selection of the techniques (specific to competition).

13 TATA CONSULTANCY SERVICES

VeriFuzz Architecture

(P)

Analysis Engine

c D

Instrumentation and

Program

Transformation

. 4
e 0
Initial input
generation
A\ 4
c D
Program
Analysis

—»[Initial test inputs (Ti)]——> T, T

)

4.[

Compilation

Instrumented
Program (P;)

Fuzz engine]
parameters (F;)

Program for
Witness(P,,)

Witness

[Property (¢) J

Fuzz Engine

| Mutation
J » and Crossover

Coverage
(fitness)
Check

Test inputs
(Population)

Prioritization
and Selection

},

A 4

Crashing

Generation

’

(" N N\
Error-witness
L Automata (w) J

input (t,.)

AFL is the backbone of VeriFuzz

TATA CONSULTANCY SERVICES

Complex validations on input

/1/ int main(){

/2/ short b , ¢, d =0,k ; Probability of generating input values such that this condition
evaluates to true is

/3/ b = getShort(); //Read input 1 1768/(2%32) = 0.000002
/4/ ¢ = getShort(); //Read input
/5/ k = getShort(); //Read inpdt 3

/6/ if (b > 25000 && c == 30000){

/7/ while(d++ < k){ AFL needs to generate on average 500,000 inputs for the
/8/ if(d % 3 1= 0){ execution to enter this branch.
Observation : Large fuzzing time is wasted to generate a test
/9/ b++ jc-- 5 input that can satisfy complex input constraints.
/10/ telse{
/11/ b-- ;c++ ;
/12/ ¥
/13/ assert(b != c);
/14/ }
/15/ '}
/16/ return 0 ;
/17/ }

(A solution to fail the assertion at /13/ is b = 29,998,c=30,000, k=1)
is TATA CONSULTANCY SERVICES

/1/ i
/2/
/3/
/4/
/5/
/6/
/7/
/8/
/9/
/10/
/11/
/12/
/13/
/14/
/15/
/16/
/17/ '}

Complex validations on input

nt main(){

_ . One idea is that a generated input using an initial input that
short b, ¢, d =0,k ; satisfies the condition at line no /6/ is likely to reach the error
b = getShort(); //Read input 1 location quickly.

c = getShort(); //Read input 2] e] !

) How to obtain an initial input that can satisfy complex input
k = getShort(); //Read input 2 constraints ?
if (b > 25000 && c == 30000){

while(d++ < k){
if(d % 3 1= 0){
b++ ;c-- ;
telse{
b-- ;c++

}

assert(b != c);

}

return 0 ;

16 TATA CONSULTANCY SERVICES

Complex validations on input

/1/ int main(){

/2/ short b, c, d=108,k; Construct a loop free program that preserves as many input

/3/ b = getShort(); //Read input 1 constraints as possible.

/4/ ¢ = getShort(); //Read input 2 ; ; ;

/5/ K = getshort(); //Read input 3 Us.e.syn.wbollc execution along a path that contains cgmplex
condition in the transformed program. Generate a test input that

/6/ if (b > 25000 && c == 30000){ by solving path constraints.

/7/ assume(d++ < k);

/8/ if(d % 3 1= 0){

/9/ b++ ;c-- Note that the intent is *not* to preserve original program

/10/ }else{ behavior, but to make the program loop free.

/11/ b-- ;c++ ;

/12/ }

/13/ assert(b != c);

/14/ '}

/15/ assert(false); Path constraint along /6/-/7/-/8/-/9/-/13/-/16/

== Oo !: !: -
/16/ return @ ; bl > 25000 A cl1==30000 A 0 < k1 A 1%3 !=0 A bl+l cl-1

/17/ '}

17 TATA CONSULTANCY SERVICES

Unbounded programs

/1/ short gl, g2, t;
/2/ int main(){

/3/ gl = getShort() ; . . .
No loop bounds. Program terminates on the assertion failure.

/4/ g2 = getShort() ;

/5/ while(1

/6/ gl++; Keep reading input in a loop

/7/ while(1)

/8/ g2++;

o £ = getshort(); This program is likely cause fuzzer hang.

/1e/ if(t == 0) bredk;

/11/ assert(gl != g2);

/12/ }

/13/ '}

/14/ return 0 ;

/15/ '}

(A solution to fail the assertion at /11/ is gl=0,g1=0,t=1)

18 TATA CONSULTANCY SER}[ICES

Unbounded programs

/1/ short gl, g2, t;
/2/ int main(){

Problem : How to give fuzzer a chance to fuzz the

/3/ gl = getShort() ; input?
/4/ g2 = getShort() ;

/5/ while(1){

/6/ g1l++;

/7/ while(1){

/8/ g2++;

/9/ t = getShort();
/10/ if(t == @) break;
/11/ assert(gl != g2);
/12/ }

/13/ '}

/14/ return O ;

/15/ }

19 TATA CONSULTANCY SER}[ICES

Unbounded programs

/1/ short g1, g2, t, 11,12, 1BND = 3000;
/2/ int main(){

/3/ gl = getShort() ;

/4/ g2 = getShort() ;

/5/ while(ll < 1BND){ //while(1) Bound the loops to a small value.
/6/ gl++;

/7/ while(12 < 1BND){ //while(1) Dynamically increase IBND over fuzzing period
/8/ g2++;
See if AFL can generate test input that can violate the
/10/ if(t == 9) break;
/11/ assert(gl != g2);
/12/ }
/13/ '}
/14/ return 0 ;
/15/ }

20 TATA CONSULTANCY SER%ICES

Restricted range of inputs

/1/ short gl1=0,g2=15,g3=1;
/2/ int main(){

/3/ int i1; Valid input range is (1,2,3)

/4/ while(1){

/5/ i1 = getShort() ;

/6/ if((i1l !'=1) && (i1 !=2) && (il != 3) return -2;

/7/ if(gl == 0 && g2 != 13 && il == 3) {g1 = 1; g3 = 3}

/8/ if(gl !'=28&&% g2 > 2 && i1 ==1) {g2 = 3;}

/9/ aaal. D : :

/10/ assert(gl == 4 8 g2 > 5 && g3 !=1) Random fuzzing is likely to produce an input sequence with
out of range numbers...

/11/ '}

/12/ return O ;

/13/ }

21 TATA CONSULTANCY SERVICES

Restricted range of inputs

/1/ short gl1=0,g2=15,g3=1;
/2/ int main(){ How to determine that the valid input range is (1,2,3) ?

/3/ int i1;

How to fuzz the input such that the generated inputis a
/4/ while(1){{<i1,T><gl,[10]><g2,[15]><g3,[1]>} random sequence formed from 1,2,3 ?

/5/ il = getShort() ;
. . | = 3 | = i | = -2,

/6/ if((i1 '=1) && (il !=2) && (il != 3) return 2’{<il,[1,2,3]><g1,[10]><g2,[15]><g3,[1]>}
/7/ if(gl == 0 && g2 != 13 && il == 3) {gl1 = 1; g3 = 3}
/8/ if(gl !'=28&& g2 > 2 && i1 == 1) {g2 = 3;}
/9/ ..., {«i1,[1,2,3]>..}
/10/ assert(gl == 4 && g2 > 5 && g3 !=1)

Perform k-interval analysis[pranalysis] and determine ranges
/11/ '} : : :

of input variables at the error location.

/12/ return 0 ;
/13/ } Change the mutation engine to randomly choose the values

within these ranges.

[pranalysis]: Shrwan. K, Bharati.C et.al. Precise Range analysis, FSE 2013

22 TATA CONSULTANCY SERVICES

Other optimizations

= Optimized instrumentation by reducing number of instrumentation points.

= Algorithmic selection of techniques

23 TATA CONSULTANCY SERXICES

Test-comp 2019

https://test-comp.sosy-lab.org/2019/results/results-verified/

The background color is gold for the winner, silver for the second, and Biohze forthethird.
Ranking by Category (with Score-Based Quantile Plots)

What you can leam from a score-based quantile plot and how to interpret it, is described in the competition report on pages 12 and 13.

Cover-Error Cover-Branches
1. VeriFuzz 1. VeriFuzz
2. KLEE 2. KLEE
3. CoVeriTest 3. CoVeriTest

1 " “"*:'.3‘_5 = |

; g T | fat
gaiz Toh AT —— H

H T | T

ém F E e f E-m 3
1 . ! 1

24 TATA CONSULTANCY SERVICES

2

Test-comp 2019

Cover-Branches
1226 1238

Cover-Error

595
499
365 365
237 247
I I]

W CoVeriTest W CPA/Tiger W ESBMC-bkind ®m ESBMC-falsif ™ FairFuzz
B KLEE B PRTest B Symbiotic B VeriFuzz

1153

%6 907
I] I

B CoVeriTest B CPA/Tiger ™ FairFuzz B KLEE B PRTest B Symbiotic B VeriFuzz

397
361

Overall
1951

1764
1524
1331 1275 1298
683
= . .

B CoVeriTest M CPA/Tiger B ESBMC-bkind B ESBMC-falsif ™ FairFuzz B KLEE B PRTest B Symbiotic W VeriFuzz ~ TATA CONSULTANCY SERVICE52

SV-COMP 2019

ReachSafety (Falsfication)
1093

1041
893 872
669 700
453 512 466 422
292 329 321

. . -

H2LS E CBMC H CBMC-Path B CPAChecker H DepthK B Divine-explicit
M Divine-smt W ESBMC W PesCo B SMACK W Symbiotic m U-Atom

NoOverflow(Falsification)

169 159 164 164 162 1 461 161 161
140 143
[[

H2LS H CBMC B CBMC-Path B CPAChecker m DepthK W ESBMC M PesCo
B Map2Check M Pinaka B Symbiotic B U-Atom m U-Atom-kojak m U-Atom Talpaln M VeriFuz
26 TATA CONSULTANCY SERVICES.

2

