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Grey-box fuzzing

* Observe the behaviors exhibited on a set of test runs using a light weight instrumentation.
* Use this information to discover new test inputs that might exhibit new behaviors.
* Example : AFL is industrial strength grey box fuzz testing tool.

Vulnerability

Crashing
testinput
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Automated testing powered by Evolutionary algorithms
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JWegner,A.Barsel et. al.,

Evolutionary test environment,
Information and software technology,
2001.

R.P. Pargs, M.J. Harrold, et. al.,
Test-data generation Using genetic
Algorithms, Journal of software testing
1999.

P. McMinn, Search based software testing,
Software testing, verification, and Reliability,
2004.
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Grey-box fuzzing — Working example

" Y

i=0
ch =0

v

l read(fd,inp,20) ]

[ return cb ]
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Grey-box fuzzing — Working example

rm v Initial input @"a"
i=20
ch =0

v

l read(fd,inp,20) ]

Evaluation

| id | _mput | AB [ Ac | BA | cA | BD | D | DE | DF_ \
1 1 1 1

a

[ return cb ]
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1

i=20
ch =0
l read(fd,inp,20) ]
) 4
inpli] 1= \0’ f;'se
true
A
y
inp[i] == ‘b’ fagse
true
B
Spch =chb + 1

[ return cb ]

" T

Grey-box fuzzing — Working example

ab" v c
Fitness
check
ld mewt  AB AC BA
1 "a"
2 “t”
3 “ab”
e
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Grey-box fuzzing — Working example

Tm @ "a”

ch =0 "b" v

v

l read(fd,inp,20) ]

4w AB AC BA CA BD CD DE DF
1 "a" 1 1

2 “b” 1 1

1
3 “ab” 1 1 1
IICII

[ return cb ]
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Grey-box fuzzing — Working example

Tm @ "a”

ch = 0 "b" \/

v
l read(fd, inp, 20) ] & ®/R

||C|l>< llbbll/" .""x "aba"\/ "abb"

4w AB AC BA CA BD CD DE DF
1 1 1

"a" 1

2 “b” 1 1 1
3 “ab” 1 1 1 1
4  “bb” 2 @ 1 1
5 “aba” 1 1 1 1 1
“abb” 2 1 1 1 1 1

[ return cb ]
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Grey-box fuzzing — Working example

" Y

i=0
ch =0

v

l read(fd,inp,20) ]

[ return cb ]

" T

ANV

"Cllx llbbll/" "x "aba"\/ "abb"x n nx

4w AB AC BA CA BD CD DE DF
1 1 1 1

a
2 “b” 1 1 1
3 “ab” 1 1 1 1
4 “bb” 1 1
5 “aba” @ @ 1 @
“abb”
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AFL — Gray Box fuzzer

/' Simple to install and use.

* Several in-built heuristics.

* Found security vulnerabilities in
several software libraries and critical
applications.

* No dependency on program structure

\ and structure of input.

Initial inputs

Initialization

Fit inputs

Prioritize
of test inputs for
fuzzing

Select next test input t Evaluate fitness and add to
for fuzzing a Queue if t’is fit

Evaluate t’ by gathering
Determine the fuzzing coverage info due to run
score N of t ont’

Execute Program on each
generated test input t’

Fuzz t N times
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AFL - Issues

= |nsensitive to Program structure. [Vuzzer]
— The metric used for evaluation is the branch pair visit counts.
= |nsensitive to input structure.[SGF]
= Sensitive to input seeds. [skyfire]
= Sensitive to amount instrumentation. [instrim]
= Not directed towards error. [AFLGO]
= |nability to explore deeper paths. [AFL-fast][Fairfuzz][Driller][safl]

= Fuzzing is random and not adoptive. [Learn & Fuzz]

[AFLGo,AFL-Fast,SGF] : Marcel Bohme, Van-Thuan, et. al., CC17,CC16,arxiv 2019,
[Driller]N.Stephens et.al. Driller: Augmenting fuzzing with Symbolic execution. NDSS 2016.
[Fairfuzz] : C.Lemiux, K.Sen, FairFuzz: Targetting rare braches, ASE 2018.

[instrim]: Chin-Chia Hsu et.al., Instrim: Light weight instrumentation for CGF, BAR 2018.
[Learn&Fuzz]: P. Godefroid, R.Singh Learn & Fuzz, Machine Learning for Input fuzzing, ASE 2017
[Skyfire]: J.Wang. et.al., Data driven seed generation for fuzzing, S&P, 2017

[Vuzzer]: Sanjay Rawat et. Al., Application aware evolutionary fuzzing, NDSS 2017

11
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....and we encountered few more issues

Unbounded programs :

Programs terminates only when the execution reaches the error location.

Reads input continuously as a stream.

Restrictive range of inputs

Programs input is drawn from a small bounded range.

Programs that process event chains (aka ECA).

Competition specific issues :

Limited time budget : Fuzzing approach is requires a longer exploration time for deeper
bugs; often days and weeks. Budgeted time for each tasks in the competition is 900s.

Benchmark diversity : Large diversity in program’s structure their constraints on input
space, and input size.

Creating binaries : Benchmarks are targeted towards the static verification. Not for
runtime verification. There are benchmarks with missing function definitions.

Execution issues : Large size memory allocations, kernel mode execution etc.

12 TATA CONSULTANCY SERVICES



VeriFuzz - approach

= VeriFuzz is designed to address few of these issues.

= Emphasis is on speed.

= Proposed approaches in literature are either heavy or require large changes to AFL.
= Focus is on light weight instrumentation, analysis and transformation.

= Addressed the following issues.

Reduced instrumentation overhead.
Novel seed generation for programs with complex input validations.

Bounding the unbounded programs.

W N

Restricted range of inputs.

Algorithmic selection of the techniques (specific to competition).

13 TATA CONSULTANCY SERVICES



VeriFuzz Architecture
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AFL is the backbone of VeriFuzz
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Complex validations on input

/1/ int main(){

/2/ short b , ¢, d =0,k ; Probability of generating input values such that this condition
evaluates to true is

/3/ b = getShort(); //Read input 1 1768/(2%32) = 0.000002
/4/ ¢ = getShort(); //Read input
/5/ k = getShort(); //Read inpdt 3

/6/ if (b > 25000 && c == 30000){

/7/ while(d++ < k){ AFL needs to generate on average 500,000 inputs for the
/8/ if(d % 3 1= 0){ execution to enter this branch.
Observation : Large fuzzing time is wasted to generate a test
/9/ b++ jc-- 5 input that can satisfy complex input constraints.
/10/ telse{
/11/ b-- ;c++ ;
/12/ ¥
/13/ assert(b != c);
/14/ }
/15/ '}
/16/ return 0 ;
/17/ }

(A solution to fail the assertion at /13/ is b = 29,998,c=30,000, k=1)
is TATA CONSULTANCY SERVICES



/1/ i
/2/
/3/
/4/
/5/
/6/
/7/
/8/
/9/
/10/
/11/
/12/
/13/
/14/
/15/
/16/
/17/ '}

Complex validations on input

nt main(){

_ . One idea is that a generated input using an initial input that
short b, ¢, d =0,k ; satisfies the condition at line no /6/ is likely to reach the error
b = getShort(); //Read input 1 location quickly.

c = getShort(); //Read input 2 ] e ] !

) How to obtain an initial input that can satisfy complex input
k = getShort(); //Read input 2 constraints ?
if (b > 25000 && c == 30000){

while(d++ < k){
if(d % 3 1= 0){
b++ ;c-- ;
telse{
b-- ;c++

}

assert(b != c);

}

return 0 ;
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Complex validations on input

/1/  int main(){

/2/  short b, c, d=108,k; Construct a loop free program that preserves as many input

/3/ b = getShort(); //Read input 1 constraints as possible.

/4/ ¢ = getShort(); //Read input 2 ; ; ;

/5/ K = getshort(); //Read input 3 Us.e.syn.wbollc execution along a path that contains cgmplex
condition in the transformed program. Generate a test input that

/6/ if (b > 25000 && c == 30000){ by solving path constraints.

/7/ assume(d++ < k);

/8/ if(d % 3 1= 0){

/9/ b++ ;c-- Note that the intent is *not* to preserve original program

/10/ }else{ behavior, but to make the program loop free.

/11/ b-- ;c++ ;

/12/ }

/13/ assert(b != c);

/14/ '}

/15/ assert(false); Path constraint along /6/-/7/-/8/-/9/-/13/-/16/

== Oo !: !: -
/16/ return @ ; bl > 25000 A cl1==30000 A 0 < k1 A 1%3 !=0 A bl+l cl-1

/17/ '}
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Unbounded programs

/1/ short gl, g2, t;
/2/  int main(){

/3/ gl = getShort() ; . . .
No loop bounds. Program terminates on the assertion failure.

/4/ g2 = getShort() ;

/5/ while(1

/6/ gl++; Keep reading input in a loop

/7/ while(1)

/8/ g2++;

o £ = getshort(); This program is likely cause fuzzer hang.

/1e/ if(t == 0) bredk;

/11/ assert(gl != g2);

/12/ }

/13/ '}

/14/ return 0 ;

/15/ '}

(A solution to fail the assertion at /11/ is gl=0,g1=0,t=1)

18 TATA CONSULTANCY SER}[ICES



Unbounded programs

/1/ short gl, g2, t;
/2/  int main(){

Problem : How to give fuzzer a chance to fuzz the

/3/ gl = getShort() ; input?
/4/ g2 = getShort() ;

/5/ while(1){

/6/ g1l++;

/7/ while(1){

/8/ g2++;

/9/ t = getShort();
/10/ if(t == @) break;
/11/ assert(gl != g2);
/12/ }

/13/ '}

/14/ return O ;

/15/ }
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Unbounded programs

/1/ short g1, g2, t, 11,12, 1BND = 3000;
/2/  int main(){

/3/ gl = getShort() ;

/4/ g2 = getShort() ;

/5/  while(ll < 1BND){ //while(1) Bound the loops to a small value.
/6/ gl++;

/7/ while(12 < 1BND){ //while(1) Dynamically increase IBND over fuzzing period
/8/ g2++;
See if AFL can generate test input that can violate the
/10/ if(t == 9) break;
/11/ assert(gl != g2);
/12/ }
/13/ '}
/14/ return 0 ;
/15/ }
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Restricted range of inputs

/1/ short gl1=0,g2=15,g3=1;
/2/ int main(){

/3/ int i1; Valid input range is (1,2,3)

/4/ while(1){

/5/ i1 = getShort() ;

/6/ if((i1l !'=1) && (i1 !=2) && (il != 3) return -2;

/7/ if( gl == 0 && g2 != 13 && il == 3) {g1 = 1; g3 = 3}

/8/ if( gl !'=28&&% g2 > 2 && i1 ==1) {g2 = 3;}

/9/  aaal. D : :

/10/ assert(gl == 4 8 g2 > 5 && g3 !=1) Random fuzzing is likely to produce an input sequence with
out of range numbers...

/11/ '}

/12/  return O ;

/13/ }
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Restricted range of inputs

/1/ short gl1=0,g2=15,g3=1;
/2/ int main(){ How to determine that the valid input range is (1,2,3) ?

/3/ int i1;

How to fuzz the input such that the generated inputis a
/4/  while(1){{<i1,T><gl,[10]><g2,[15]><g3,[1]>} random sequence formed from 1,2,3 ?

/5/ il = getShort() ;
. . | = 3 | = i | = -2,

/6/ if((i1 '=1) && (il !=2) && (il != 3) return 2’{<il,[1,2,3]><g1,[10]><g2,[15]><g3,[1]>}
/7/ if( gl == 0 && g2 != 13 && il == 3) {gl1 = 1; g3 = 3}
/8/ if( gl !'=28&& g2 > 2 && i1 == 1) {g2 = 3;}
/9/ ..., {«i1,[1,2,3]>..}
/10/ assert(gl == 4 && g2 > 5 && g3 !=1)

Perform k-interval analysis[pranalysis] and determine ranges
/11/ '} : : :

of input variables at the error location.

/12/ return 0 ;
/13/ } Change the mutation engine to randomly choose the values

within these ranges.

[pranalysis]: Shrwan. K, Bharati.C et.al. Precise Range analysis, FSE 2013
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Other optimizations

= Optimized instrumentation by reducing number of instrumentation points.

= Algorithmic selection of techniques
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Test-comp 2019

https://test-comp.sosy-lab.org/2019/results/results-verified/

The background color is gold for the winner, silver for the second, and Biohze forthethird.
Ranking by Category (with Score-Based Quantile Plots)

What you can leam from a score-based quantile plot and how to interpret it, is described in the competition report on pages 12 and 13.

Cover-Error Cover-Branches
1. VeriFuzz 1. VeriFuzz
2. KLEE 2. KLEE
3. CoVeriTest 3. CoVeriTest
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Test-comp 2019

Cover-Branches
1226 1238

Cover-Error

595
499
365 365
237 247
I I ]

W CoVeriTest W CPA/Tiger W ESBMC-bkind ®m ESBMC-falsif ™ FairFuzz
B KLEE B PRTest B Symbiotic B VeriFuzz

1153

%6 907
I ] I

B CoVeriTest B CPA/Tiger ™ FairFuzz B KLEE B PRTest B Symbiotic B VeriFuzz

397
361

Overall
1951

1764
1524
1331 1275 1298
683
= . .

B CoVeriTest M CPA/Tiger B ESBMC-bkind B ESBMC-falsif ™ FairFuzz B KLEE B PRTest B Symbiotic W VeriFuzz ~ TATA CONSULTANCY SERVICE52




SV-COMP 2019

ReachSafety (Falsfication)
1093

1041
893 872
669 700
453 512 466 422
292 329 321

. . - . . . .

H2LS E CBMC H CBMC-Path B CPAChecker H DepthK B Divine-explicit
M Divine-smt W ESBMC W PesCo B SMACK W Symbiotic m U-Atom

NoOverflow(Falsification)

169 159 164 164 162 1 461 161 161
140 143
[ [

H2LS H CBMC B CBMC-Path B CPAChecker m DepthK W ESBMC M PesCo
B Map2Check M Pinaka B Symbiotic B U-Atom m U-Atom-kojak  m U-Atom Talpaln M VeriFuz
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